If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4^2+7^2=c^2
We move all terms to the left:
4^2+7^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+65=0
a = -1; b = 0; c = +65;
Δ = b2-4ac
Δ = 02-4·(-1)·65
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{65}}{2*-1}=\frac{0-2\sqrt{65}}{-2} =-\frac{2\sqrt{65}}{-2} =-\frac{\sqrt{65}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{65}}{2*-1}=\frac{0+2\sqrt{65}}{-2} =\frac{2\sqrt{65}}{-2} =\frac{\sqrt{65}}{-1} $
| 1/3(21y+39)=36 | | 3x-(2x=7)=15 | | 2=6n-4 | | 0.5x+0.2(25+x)=3 | | 9-7=17x | | y=1.22(24)+7.83 | | b^2=-476 | | 12u-1=3u+4 | | ,12u-1=3u+4 | | x^-1(5x+4)=0 | | y=1,000 | | .5x+.25-4=6 | | 4(3x-7)+3x=-5(2x+8) | | 7x²+1=17 | | (7x+16)=51 | | 8x²+1=17 | | (7x+16)+51=180 | | 2/t+3t/2=7 | | 186=6(5x-4) | | 186=6(-5x-4 | | 2x+20=2x-20=x+40 | | x2-8x-173=0 | | 8/3x+1/3x=13+1/3+5/3x | | 4+|4m+2|=38 | | 5+|4m+2|=38 | | 2y-3/3+5-y/2=3 | | r/19=-11 | | 70x=12 | | X-1=3y+6 | | x*(-7+x)*(x+7)=-120 | | 5/3x+1/3x=28 | | 5x+4(x+5)=-43 |